首页» 实践教学» 工程案例

工程案例

青岛市团岛污水处理厂工程

 

1.概述

青岛市地处胶东半岛西南部,是我国北方著名的轻工港口城市、国家计划单列城市和十五个经济中心城市之一。得天独厚的旅游条件使青岛市形成著名风景旅游和避暑疗养胜地,为保护旅游资源,创造更好的投资环境,促进城市的可持续发展,青岛市已被国家定为黄、渤海污染防治的重点城市。
  青岛市有五大排水系统,即娄山后排水系统、李村河排水系统、海泊河排水系统、团岛排水系统和青岛路以东排水系统。
  青岛市团岛污水处理厂位于青岛市市南区团岛,即原团岛污水处理厂西北侧的规划填海区,占地面积10公顷。青岛市团岛污水处理厂工程的建设主要是解决团岛排水系统青岛市市南区西部(即老市区和市中心区)污水随意排放的问题,改善和治理污水对胶州湾的严重污染问题。该工程收水面积为5.6km2,服务人口为26万人,工程建设规模为10m3/d

青岛市团岛污水处理厂工程是第一批德国政府赠款项目,赠款总额为2500万德国马克,属青岛市及山东省重点工程项目,工程概算总投资为32423万元,其中利用德国政府赠款2500万德国马克,折合人民币8275万元,国内自筹配套资金24148万元。本工程设备供应商的确定、土建施工单位及设备安装单位的确定均通过公平、公正、合理的招投标方式进行。

受青岛市市政总公司和青岛市排水管理处的委托,中国市政工程华北设计研究院承担了本工程项目的设计任务,19914月完成了项目的可行性研究报告,并通过省、市两级专家会审。1992年至1993年德国政府派遣专家和官员对该项目进行了技术和经济评估,污水处理工艺由两期实施的两段法A+A2/O改为一期一步到位的一段法A2/O19941月至19951月进行了项目的初步设计及设备招标书的编写与发售工作,共有7家外国公司参与投标,经过评标、技术谈判、商务谈判三个阶段认真细致的工作,选出了中标公司,并报国家外经贸部和德国政府批准,最终由德国普鲁士革·诺尔(Preusag-Noell)公司中投,并成为进口设备的总供货商。19961月中国市政工程华北设计研究院又针对技术上的一些变化及取费标准的变化,对原初步设计进行了修改,19965月青岛市建设委员会组织专家会审对初步设计进行了批复。19985月最终完成本项目的施工图设计。

本工程于19964月正式开工建设,199810月建成并进行单机试车及联动试车,同时投入试运行状态,19994月整个工程全面竣工并通过了青岛市有关部门组织的工程竣工验收。19994月正式交付使用。

近三年的生产运行结果表明,污水处理厂出水水质各项指标达到了国家污水综合排放标准(GB8978-88)的一级标准指标要求,污水处理厂运行稳定,自动化程度高,除磷脱氮效率高,运行效果达到了预期的目的,充分体现了工程设计的高度创新性、先进性和实用性。综合效益显著,得到了国家、省、市领导及有关单位来访专家的高度评价。国家建设部部长俞正声、山东省省长李春亭、青岛市市委书记张惠来、青岛市市长王家瑞等上级领导先后视察了本工程,并给予了充分的肯定和很高的评价,该项工程目前已成为山东省其它城市建设城市污水处理厂的范例。

2. 进、出水水质

2.1 进水水质
  根据团岛排水系统水质特点: 水质构成以生活污水为主,工业废水仅为数量不多的食品工业废水,其可生化性较高。 污水浓度高,其BODCODTNTP等浓度是普通城市污水的3 4倍。水质监测资料及华北院对水质进行的现场试验确定见表1

1  团岛污水处理厂进厂水质

 

BOD5

CODcr

SS

TKN

TP

设计水质(mg/L

450

900

650

124

10

2.2 出水水质
  团岛排水系统附近无可用以接纳污水的河流,自形成排水系统以来,一直将胶州湾海域作为其受纳水体,团岛污水处理厂建成后亦如此。胶州湾位于黄海中部胶州半岛东南部,按海域水体物理交换能力的程度划分,胶州湾大体上可分为两个区域:北部为滞缓区,南部为活跃区。团岛污水处理厂排放口即处于活跃区交换能力最强部位。
  本工程的二级处理出水标准保证值按照国家《污水综合排放标准》(GB8978-88)中一级标准和城市二级污水处理厂出水标准综合确定,并完全满足该两标准的要求。
  深度处理的出水标准保证值按国家建设部《生活杂用水水质标准》(CJ25.1-89)之规定制定,并充分满足这一标准的要求。

2 出水水质指标一览表

 

 

SS

BOD5

CODcr

NH4+-N

TKN

TP

浊度

备注

二级处理(mg/L

最高值

30

30

100

15

 

 

 

GB8978-88

平均值

20

20

80

4

6

3

 

 

深度处理(mg/L

最高值

5

10

50

10

 

0.5

5

 

平均值

4

6

40

4

6

0.4

3

 

 

3 处理工艺

3.1 污水处理工艺

采用改良型的Phoredox除磷脱氮工艺工艺,其运行方式见图2工艺流程见图3

 

3 污水处理工艺流程图

3.2 污泥处理工艺确定
  污泥处理采用目前国内外应用最普遍的中温消化处理工艺,采用这种工艺不仅可以达到污泥稳定的目的,而且可以消灭污泥中的部分致病菌和寄生虫卵。在消化过程中所产生的沼气可以用作燃料来拖动鼓风机,降低污水处理厂的电耗。
  采用一级中温消化,机械搅拌。本工程设计污泥处理工艺流程见图4
3.3 污水深度处理工艺
  污水的深度处理采用常规混凝-沉淀-过滤工艺,其出水水质可充分满足《生活杂用水水质标准》要求,不仅可用于厕所冲洗、城市绿化、洗车和扫除,也可用作冷却用水。工艺流程如图5


4  污泥处理工艺流程图


5 污水深度处理工艺流程图

4 工艺设计

4.1 粗格栅

粗格栅采用高链式机械除渣粗格栅,设3台,其中一台备用。

主要设计参数:设计流量1.5 m3/s,栅渠宽度0.8 m,栅前水深1.2 m,栅前流速0.78 m/s,栅条间隙20 mm,栅条厚度8 mm,过栅流速1.3 m/s

运行控制:根据过栅水头损失控制栅耙运行,最大过栅水头损失200 mm,同时设定时和手动控制。栅渣处置:栅渣经压榨机挤压脱水后运往厂外填埋,3台粗格栅,共用一台无轴式螺旋输送机和压榨机。

为节省土建费用及便于管理,把细格栅同粗格栅及其栅渣压榨机合建于一体,上面设雨棚。设备制造厂家:粗细格栅德国Preussag NOELL公司;栅渣压榨机德国EMU公司。材料:格栅水下部分及其它同水接触部分均为不锈钢,栅渣压榨机全部为不锈钢。
4.2 细格栅
  细格栅设3台,21备,全部为机械除渣高链式细格栅。设计参数:流量1.5 m3/s,栅渠宽度0.8 m,水深1.2 m,栅条间隙6 mm,栅条厚度4 mm。栅渣处置和运行控制同粗格栅。
4.3 曝气沉砂池
  沉砂采用带除渣撇油渠的矩形曝气沉砂池,设两格。设计参数:流量1.5 m3/s,停留时间T=4 min,水平流速0.1 m/s,池长25 m。穿孔管大气泡曝气系统,曝气量1.6 m3/h·m3池容,总气量576 m3/h,鼓风机300 m3/h×(2+1)(带噪音控制罩)。
  排砂机械:桥式刮砂机,两格共用一车,每格设一个吸砂泵,一个圆形旋流式砂水分离器。
  撇油除渣:每格设一个浮渣刮板,刮除的浮渣和油脂用浮渣泵(21备)送至污泥消化池或污泥浓缩池,浮渣泵规格Q=30 m3/hH=6 m。材料:所有空气管均为不锈钢管材。
4.4 进水泵房
  设计流量 Q=1.5 m3/s。水泵采用德国进口的不堵塞型潜水泵,共设4台,31备。设计参数:水泵扬程12 m,流量500 L/s,轴功率75 kW
  为节省占地和造价及管理的方便,泵房与粗格栅、细格栅及曝气沉砂池四位一体,建在一起。
  水泵由PLC控制,自动运行,根据进水量或集水池位调整工作出水泵的台数。每台水泵的工作都是均衡的,互为备用。地上设就地控制箱。
4.5 初沉池
  初沉池采用矩形平流池,这一方面是为节省占地面积,解决本工程占地面积不足的问题,另外根据理论研究结果,平流沉淀池运行的水力条件要比辐流池好些,例如配水均匀、水流稳定、耐冲击负荷性强、受风力影响较小等,因而沉淀效果好。在造价方面,随着规模的扩大,格数的增多,造价也逐渐降低。对此,近几年随着对外交流机会的增多,在出国考察时,我们也深有体会和验证。同国内不同,国外污水处理厂中平流式沉淀池的应用是十分普遍的。
4.6 初沉池主要设计参数及设备规格
  设计流量5400 m3/h,表面负荷2 m3/h·m2,停留时间1.5 h,有效水深3.0 m,水平流速8 mm/s,池长43 m,格宽8 m8格。
  排泥:每池设链条式刮泥机,自后向前刮泥至池首处的泥斗,定时靠静水压将泥排出池外,用排泥泵排至污泥浓缩池,每天排泥约12小时。选用气动排泥阀。链条式刮泥机,链条及链轮均用不锈钢制造,刮板用特种木材制造。
  浮渣槽设于池末端,用不锈钢制造。浮渣泵为德国KSB潜水泵,Q=10 m3/hH=10 m3(2+1)
  设2台空气压缩机(1+1),一个空气罐,作为气动阀的气源。
  设排泥泵2(1+1)Q=90 m3/hH=10 m
  运转说明: 每池前端设进水闸门和配水穿孔墙,池后部设指形槽集水,运转时可单池停池检修,并可视进水碳源情况关闭1 4个池子,缩短停留时间,以求尽可能的提高曝气池的碳氮比,改善反硝化条件; 各池轮流排泥。
4.7 曝气池
  池型:矩形推流式鼓风曝气池
  主要设计参数及计算结果:
  设计流量:因为曝气池水力停留时间很长,故其设计流量按最高日平均时流量计算,日变化系数Kd1.1Q=4583 m3/h。进水温度14,安全系数2.5,硝化区泥龄6 d,非曝气污泥比0.48。硝化菌的生长率为μ14=0.43(按μt=0.47×1.103t-15Downing公式),系统总泥龄11.5 d。污泥产率YSS按德国ATVABI公式:

  

  式中:SS0-进入曝气池的SS浓度,为318 mg/L
     BOD5-进入曝气池的BOD5,为292 mg/L
     tDS-系统的总泥龄,d

  计算结果,污泥产率为Yss=1.05 kgSS/kgBOD
  曝气池中SS总量:

  

  混合液浓度MLSS=4 kg/m3。曝气池总容积V=88 147 m3,水力停留时间Td=19.2 h,其中好氧(硝化)区停留时间10 h,池容积46 000 m3;回流污泥反硝化区停留时间1 h,池容积46 000 m3;厌氧(磷释放)区停留时间1.5 h,池容积6700 m3;缺氧(反硝化)区停留时间6.5 h,池容积29 800m3;脱气区池容积1000 m3
  校核参数:BOD容积负荷LV=0.33 kgBOD/m3·dBOD污泥负荷Ls=0.08 kgBOD/kgSS·d
4.8 池体布置及主要尺寸
  共设4池,并联工作,每池从前至后依次是回流污泥反硝化区、厌氧区、缺氧区、缺氧、好氧两用区和好氧区、除气区。好氧区内安装曝氧头,两用区安装曝气头和水下搅拌器,其余各区均安装水下搅拌器。有效水深:6.5 m
  污泥回流:回流污泥用不堵塞型潜水泵提升,回流泵最大流量按回流比R=150%计,为6250 m3/h,为便于调节流量设7台水泵,6l备,水泵扬程6 m
  剩余污泥:剩余污泥单独用泵提升送至污泥浓缩池,剩余污泥泵设4台(其中1台备用),设2套变频调速器,以便调节排泥量。
  曝气系统:选用德国OXYFLEX公司生产的板式曝气头,氧转移率不低于15 gO2/m3·m水深,通过曝气头的损失不大于250 mm,每座曝气池内均适当设置甲酸冲洗接口和(冷凝水)排水管,配备两套移动式甲酸冲洗设备。
  水下搅拌器:为防止非曝气区内混合液形成沉淀,在其中设水下搅拌器。搅拌功率:硝化、反硝化两用区内5 W/m3池容,其余3 W/m3池容,搅拌器采用FLYGT公司产品。
  空气管道:全部空气管道均由外方提供,池内为不锈钢管,池外至鼓风机房均为热镀锌钢管。
  溶解氧控制水平:       好氧段2 mg/L;缺氧段<0.7 mg/L;厌氧段<0.5mg/ L
4.9 二沉池
  二沉池采用矩形平流式,钢筋砼结构。设计流量1.5 m3/s5420 m3/h),表面负荷1.0 m3/m2&middot;h,停留时间3.5 h,格宽10 m,格长66.0 m12格。有效水深3.5m,总水深4.0 m,水平流速8 mm/s
  二沉池出水经加氯后进接触池、接触30分钟后排出厂外。
4.10 鼓风机房
  鼓风机房设计流量为66 500 m3/h,选用HV型单级高速离心式鼓风机、设4台、其性能参数为:流量16 625 m3/h,压力7500 mm水柱,轴功率425 kW
  另外配备沼气拖动的相同规格鼓风机2台,不另设备用鼓风机。鼓风机房墙外设进风廊道和进风塔,廊道入口处设两个卷帘式空气除尘器。每台鼓风机的进口均设有进口消声过滤器,出口处设有排气安全阀。
  沼气发动机的总效率仅30%。为了提高沼气能源的利用率,配备全套的余热回收系统,把沼气发动机冷却水和排烟气中的余热回收起来,利用其为消化池内的污泥加热。这样可以回收到沼气热量的40%,使综合效率提高70%。回收的这部分热量,在夏季已足够消化池加热,冬季不足部分由燃油锅炉补充。
  鼓风机的工作,由PLC自动控制。运转时根据两曝气池内溶解氧的大小由PLC自动地调整某一台工作风机的出风量或增减工作风机的台数,维持曝气池中溶解氧在设定的范围内,达到经济运行的目的。鼓风机出风量的改变是由伺服马达调整风机进口导叶片的角度来实现的。
4.11 混合液回流
  最大的混合液回流比按q=400%计。混合液回流泵采用潜水轴流泵,设在曝气池的末端池内,每个曝气池设1台,共4台。设计回流泵流量4180 m3/h,扬程0.8 m
4.12 污泥浓缩池
  初沉池污泥和剩余活性污泥均进入污泥浓缩池中进行浓缩。充分利用引进设备的优势,参照国外日益普遍的作法,对剩余污泥单独进行机械浓缩,而初沉池污泥仍用重力式浓缩。
  对剩余污泥的机械脱水用带式浓缩机。机型采用德国KLEIN公司双带式浓缩机,设计四台,三用一备。混凝剂采用PAM干粉,投加量1 2 kg/t干污泥。混凝剂制品及投加全套设备均采用德国产品,投药量按污泥量比例自动控制。
  剩余污泥量29 000 DS。浓缩前含固率0.67%,体积流量4328 m3/d;浓缩后含固率5%,体积流量580 m3/d
  初沉污泥采用圆形流式重力浓缩池。污泥量37050 kgSS/d,浓缩前含固率3%,体积流量1235 m3/d,表面固体负荷93 kgSS/m2&middot;d,浓缩池总表面积400 m22池,每池面积200 m2,直径16 m,停留时间24小时,有效深4 m;悬挂式中间传动带栅条式刮泥机,主要部件均用不锈钢制造;浓缩后含固率5%
4.13 污泥消化池
  污泥消化采用一级中温消化。设计污泥量66 720 kgDS/d,有机含量59%,消化前含固量5.39%,体积流量1219 m3/d,停留25 d(投配率4%)。消化池4座,总容积30 000 m3,单池容积7500 m3。有机物分解率50%。消化后污泥量47 000 kgDS,消化池温度35&plusmn;1,池外间接加热,热媒为90热水,来自锅炉房或沼气机余热系统。
  搅拌方式的说明:主要的搅拌方式有沼气搅拌和机械搅拌两种,目前,国内大型污泥消化池多采用沼气循环搅拌,这种方式具有搅拌均匀,便于控制的优点。又因为池内没有活动部件,而便于检修。另外的一种搅拌方式是机械搅拌,这种搅拌方式最突出的优势是搅拌均匀而且能耗低,因而在60年代以前曾在消化池搅拌中占据主导地位。后来因维修困难才逐步为沼气搅拌所替代。但近年来,国外研究出的几种新型机械搅拌器彻底解决了维修难的问题,其明显的节能效果受到污水处理界的重视,又逐步重新被广泛的采用。其中具有代表性的是短轴式机械搅拌器。这种搅拌器由一个导流筒和一个立式轴流泵组成。轴流泵设在池内上部液位以下,下面接导流筒。轴流泵由设于池盖上面的立式电机脱动,泵轴和叶轮可从池内抽出进行检修。
4.14 污泥控制室
  四座消化池共用一座污泥控制室。
  污泥控制室占地540平方米,控制室内设有污泥投配泵,污泥循环泵,热交换器和单轨吊车。
  (1) 污泥投配泵。每日污泥投配量1315 m3/d,每日投配时间6 h。设5台投配泵,41备,单台流量5 50 m3/h,扬程40 m,轴功率10 kW。污泥投配泵选用偏心螺杆泵,生产厂家为NETZSCHALLWEILER型号为NFl00,带有变频调速机构。
  (2) 污泥循环泵。循环泵将污泥从消化池抽出,压送热交换器,最终返回消化池。设5台循环泵,41备。单台流量150 m3/h,扬程4 m,轴功率6 kWEMUKSB生产。
  (3) 热交换器。用于投配污泥和循环污泥的加热。采用管式热交换器。共设两台,每台热交换器负责2个消化池污泥的加热。每台换热面积为30平方米。热媒为热水,水温大约70,来自于沼气余热回收利用和锅炉房。热交换器功率为850千瓦,生产厂家为FUNKEPREUSSAG NOELL
  (4) 单轨吊车。控制室内设手动单梁悬挂式起重机二台,Q=2吨,用于设备的安装和维修。
  (5) 控制通过PLC对四座污泥消化池实行自动控制维持其恒湿恒压和恒水位。
4.15 污泥脱水机房
  本工程采用离心脱水机进行消化污泥的脱水。
  主要设计参数:污泥量49 290 kgDS/d,脱水前含固率5%,体积流量486 m3/d,每日工作时间24 h,脱水后污泥含固率25%,离心脱水机3台(21备),每台脱水能力25 32 m3/h。选用固体聚丙烯酰胺混凝剂,最大投加量6.5 kg/tDS。螺旋式污泥输送机一套,干污泥槽4个,每个容积7 m3,混凝剂制备和投加系统一套,污泥投配泵三台。控制方式:污泥泵带变频调速,投药泵有调频和可动两种方式,按进泥量设定比例自动投加。
4.16 沼气的净化和利用
  基本参数:消化前污泥量65 720 kgSS/d,其中VSS59%,消化后VSS分解率50%,产气率0.7 m3沼气/kgVSS,日产气量13 571 m3/d,沼气热值6 kW&middot;h/m35160 kcal/m3),每日沼气总储量81427 kW&middot;h/d3390 kW&middot;h/h
  沼气利用: 用于两台沼气发动机,直接拖动鼓风机,输出功率402 kW&times;2=804 kW 用于一台沼气锅炉,输出功率600 kW
  余热利用:两台沼气发动机输出功率804 kW,输入功率2680 kW(效率为30%),通过余热回收可得到1100 kW&middot;h/h的储量(回收率41%),用于污泥的加热。
  沼气净化:采用二台干式沼气脱硫塔及两个沼气过滤器。
4.17 水力循环澄清池
  本工程污水深度处理中沉淀部分采用改进型的水力循环澄清池。这种水力循环澄清池由进水喷咀、喉管、第一反应室、第二反应室和沉淀区几部分构成。同传统的水力循环澄清池相比,具有水头损失小,出水水质好和运转稳定等优点。设计流量按供水量加上10%的自用水量计,44 000 m3/d1833 m3/h),共设2池,单池设计流量917 m3/h。主要设计参数为:喷咀出口流速4.1 m/s,喉管内混合液体上升流速0.2 m/s,第一反应室出口流速0.04 m/s,反应时间1.0 min;第二反应室进口流速0.03 m/s,反应时间4.0 min;澄清区液面上升流速2.2 mm/s;池外径14.5 m,池总高10.3 m;聚丙烯酰胺混凝剂投加量5 mg/L,投加浓度1%,投加于澄清池前面的静态混合器中。
4.18 滤池
  过滤采用气水反冲洗双层滤料快滤池。总设计流量为供水量加上5%的自用水量,42000 m3/d1750 m3/h),共设8池,单池过滤面积33 m2;滤速6.6 m/h,强制滤速7.6 m/h。滤料构成:石英砂0.8 m,粒径1.4 2.5 mm;无烟煤0.6 m,粒径0.8 1.2 mm,承托层共0.2 m,滤料表面以上水深1.7 m。长柄滤头小阻力配水系统,空气和水反冲洗强度:空气20 L/s&middot;m2;水10 L/s&middot;m2,由反冲洗水泵直接供给。阀门均选用电动蝶阀。
  滤池工作由PLC自动控制,反冲洗周期按时间控制。
4.19 清水池及回用水泵房
  (1) 清水池
  对于回用水而言,产水量是均匀连续的,而用户用水则是不均匀甚至是断续的,为此要设清水池进行水量的调节。清水池的总有效容积为6000 m3,占日供水量的15%。共设2池,单池有效容积3000 m3,长35 m,宽21.6 m,有效水深4.0 m,池内设3道导流墙。
  (2) 回用水泵房
  回用水泵房边设于清水池的一侧,通过阀门井把二者联系起来。泵房内分别安装滤池反冲洗水泵和回用水送水泵。选用潜水泵,置于吸水池内,地上设手动单轨小车和检修栅。配电及控制室在附近单独的建筑物内,泵房上面设就地操作箱。
  水泵规格:反冲洗泵Q=594 L/sH=10 mN=80 kW,共2台,11备;回用水送水泵:Q=264 L/sH=20 mN=70 kW,共3台,21备。
4.20 加氯间和加药间
  深度处理的加药间和二级处理、三级处理出水加氯间建在一起,称为加氯间和加药间。
  (1) 二级处理出水加氯
  污水经二级处理后,水质改善,细菌总数大幅度减少,但其绝对值仍很可观,并有可能存在致病菌,排入水体后仍可能造成传染病的流行,为此排放前还要进行消毒处理,对于城市污水处理厂,一般是采用液氯消毒。
  结合团岛污水处理厂的具体情况,本工程设计二级处理出水采用季节性加氯,加氯时间每年100天,投加量为5 mg/L
  (2) 三级处理出水加氯
  回用水加氯常年进行。投加量按3 mg/L
  (3) 总加氯量:二级出水27 kg/h,回用水5 kg/h
  (4) 加氯机选型及规格
  选用全真空自动加氯机二套,规格38 kg/h,流量配比控制。配备吨级氯瓶10个,分3组,每组3个,在线两组,一组工作一组备用。用压力切换器自动切换。出氯管2根,一路至接触池,一路至回用水清水池,2路分别计量,中间设连通管,使可互为备用。
  (5) 加氯间布置
  加氯间由氯库,控制室、值班室和氯吸收中和间组成。氯库存放15天的液氯共10只吨级钢瓶,内设3吨单梁悬挂式起重机一部,真空调节阀也放在氯库内。加氯机控制器放在控制室,可根据原水进水和深度处理进水流量按设定的比例分别控制其加氯量。
  为防止由于恶性跑氯事故对周围环境造成严重危害,设有氯中和塔由鼓风机、碱液泵、碱液池和吸收塔组成,布置在氯吸收中和间。一旦发生跑氯时,由安装在氯库内的漏氯检测仪发出声光报警信号并自动启动吸收中和系统,漏到室内的氯气经鼓风机抽吸送到中和塔,被自塔顶喷淋下来的NaOH溶液中和掉,尾气自塔顶排入大气。
  (6) 加药间和药库
  深度处理采用高分子絮凝剂聚丙烯酰胺,投加量按0.5 mg/L,采用泵投加设3台计量泵,21备,药液的制备采用一个φ1600 mm的溶药罐和2φ1200 mm的溶液罐,投加药液浓度1.0%
  药库在加药的侧面,贮备30天的药剂,设手动小车一部。计量泵规格Q=50 L/hH=0.63 MPa

5.主要设计特点总结

青岛市团岛污水处理厂是国内第一个大型高浓度城市污水处理厂,其中COD、TKN和TP分别高达900mg/L124mg/L和10mg/L。设计采用了带回流污泥反硝化和释气段的改良型A2/O工艺,成功地解决了碳源不足的高浓度城市污水除磷脱氮技术难题,处理出水除了磷稍高外(出水TP为0.63.0mg/L),其余各项指标均稳定地达到或超过现行污水综合排放标准一级标准要求。

成功地开创了大型城市污水处理厂中同时采用平流式初沉池和二沉池的先例。运转结果证明,在大型城市污水处理厂中应用平流式沉淀池除了节约用地。节省建设费用外,还具有出水水质高而且稳定的优点。本工程已成为在我国推广应用平流式沉淀池的范例。

在国内第一次应用短轴式机械搅拌污泥消化池,运行结果表明,这种搅拌方式具有工艺简单、搅拌效果好、高效节能、不缠绕、理简便,工作可靠等优点,推动了新型机械搅拌式污泥消化池在我国的的广泛应用。

在国内首次应用剩余污泥的机械浓缩,避免了污泥浓缩过程中磷的回溶,有利于保证工艺过程的除磷效果,同时提高了剩余污泥的浓缩程度,是减少污泥消化池容积的有效手段。消化池容积减少,则用于消化池搅拌,加热方面的能耗将大幅度降低,在技术和经济方面都具有很大的优越性。在这一工程的带动和影响下,国内污水污水处理技术已迈入机械浓缩时代。

该工程在国内率先采用了离心脱水机并取得了十分满意的结果,带动了这一污泥脱水技术在国内污水处理工程中的应用,几年来的运行结构表明,离心脱水具有固体回收率高,泥饼含水率低且适应性强,操作环境好以及不需冲洗水等优点。

该工程不仅通过沼气利用和污水回用注重能源回收,而且在污水厂内设有中水系统,用来冲洗机器及绿化,节省了大量能源。该工程由于处于滨海地段,海风腐蚀性较强,故构筑物上的栏杆采用钢筋混凝土栏杆,既节省了投资又抗腐蚀。